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1 Introduction 
 
   This Software Design Document establishes the software design for the Land 
Information System (LIS).  LIS is a project to build a high-resolution, high-performance 
land surface modeling and data assimilation system to support a wide range of land 
surface research activities and applications.  
   
    This document has been prepared in accordance with the requirements of the Task 
Agreement GSFC-CT-2 under Cooperative Agreement Notice CAN-00-OES-01 
Increasing Interoperability and Performance of Grand Challenge Applications in the 
Earth, Space, Life, and Microgravity Sciences, funded by NASA’s ESTO Computational 
Technologies (formerly High Performance Computing and Communications) Project.   
 
1.1 Purpose and goals 
 
   This document serves as the blueprint for the software development and 
implementation of the Land Information System (LIS).  
 
   The design goals of LIS are near real-time, high-resolution (up to 1km) global land data 
simulation executed on highly parallel computing platforms, with well defined, standard-
conforming interfaces and data structures to interface and inter-operate with other Earth 
system models, and with flexible and friendly web-based user interfaces.  
     
1.2 Scope  
 
     This document covers the design of all the LIS software components for the three-year 
duration of the LIS project.  The document focuses primarily on the implementation of 
the LIS software on a general-purpose Linux cluster system, and most of the component 
designs also apply to an SGI Origin 3000 system.  This document does not cover design 
for other hardware/software platforms.  
   
     Specifically, this design covers the following aspects of LIS:   
 

•  Realistic land surface modeling. LIS will simulate the global land surface 
variables using various land surface models, driven by atmospheric “forcing data” 
(e.g., precipitation, radiation, wind speed, temperature, humidity) from various 
sources. 

•  High performance computing. LIS will perform high-performance, parallel 
computing for near real-time, high-resolution land surface modeling research and 
operations.  

•  Efficient data management. The high-resolution land surface simulation will 
produce a huge data throughput, and LIS will retrieve, store, interpolate, re-
project, sub-set, and backup the input and output data efficiently.   
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•  Usability. LIS will provide intuitive web-based interfaces to users with varying 
levels of access to LIS data and system resources, and enforce user security 
policies.  

•  Interoperable and portable computing. LIS will incorporate the ALMA 
(Assistance for Land surface Modeling Activities) and ESMF (Earth System 
Modeling Framework) standards to facilitate inter-operation with other Earth 
system models. In order to demonstrate portability of LIS, the land surface 
modeling component will be implemented on a custom-designed Linux cluster 
and an SGI Origin 3000.  

 
2 Land Surface Modeling and Data Assimilation 
 
  In general, land surface modeling seeks to predict the terrestrial water, energy and 
biogeochemical processes by solving the governing equations of the soil-vegetation-
snowpack medium.  Land surface data assimilation seeks to synthesize data and land 
surface models to improve our ability to predict and understand these processes.  The 
ability to predict terrestrial water, energy and biogeochemical processes is critical for 
applications in weather and climate prediction, agricultural forecasting, water resources 
management, hazard mitigation and mobility assessment. 
 
In order to predict water, energy and biogeochemical processes using (typically 1-D 
vertical) partial differential equations, land surface models require three types of inputs:  
1) initial conditions, which describe the initial state of land surface; 2) boundary 
conditions, which describe both the upper (atmospheric) fluxes or states also known 
as "forcings" and the lower (soil) fluxes or states; and 3) parameters, which are a function 
of soil, vegetation, topography, etc., and are used to solve the governing equations. 
 
The proposed LIS framework will include various components that facilitate global land 
surface modeling within a data assimilation system framework. The main software 
components of the system are:  

•  LDAS  (Land Data Assimilation System) : is a software system that integrates the  
use of land surface models in a data assimilation framework.  

•  Land surface Models : LIS will include 3 different land surface models, namely, 
CLM, NOAH, and VIC.  

These components are explained in detail in the following sections.  
 
2.1 Land Data Assimilation System (LDAS) 
 
   LDAS is a model control and input/output system (consisting of a number of 
subroutines, modules written in Fortran 90 source code) that drives multiple offline one 
dimensional land surface models (LSMs) using a vegetation defined "tile" or "patch" 
approach to simulate sub-grid scale variability. The one-dimensional LSMs such as CLM 
and NOAH, which are subroutines of LDAS, apply the governing equations of the 
physical processes of the soil-vegetation-snowpack medium. These land surface models 
aim to characterize the transfer of mass, energy, and momentum between a vegetated 
surface and the atmosphere. 
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   LDAS makes use of various satellite and ground based observation systems within a 
land data assimilation framework to produce optimal output fields of land surface states 
and fluxes. The LSM predictions are greatly improved through the use of a data 
assimilation environment such as the one provided by LDAS. In addition to being forced 
with real time output from numerical prediction models and satellite and radar 
precipitation measurements, LDAS derives model parameters from existing topography, 
vegetation and soil coverages. The model results are aggregated to various temporal and 
spatial scales, e.g., 3 hourly, 0.25 deg x 0.25 deg. 
 
   The execution of LDAS starts with reading in the user specifications. The user selects 
the model domain and spatial resolution, the duration and timestep of the run, the land 
surface model, the type of forcing from a list of model and observation based data 
sources, the number of ``tiles' per grid square (described below), the soil parameterization 
scheme, reading and writing of restart files, output specifications, and the functioning of 
several other enhancements including elevation correction and data assimilation. 
 
   The system then reads the vegetation information and assigns subgrid tiles on which to 
run the one-dimensional simulations. LDAS runs its 1-D land models on vegetation-
based "tiles" to simulate variability below the scale of the model grid squares. A tile is 
not tied to a specific location within the grid square. Each tile represents the area covered 
by a given vegetation type. 
 
  Memory is dynamically allocated to the global variables, many of which exist within 
Fortran 90 modules. The model parameters are read and computed next. The time loop 
begins and forcing data is read, time/space interpolation is computed and modified as 
necessary. Forcing data is used to specify boundary conditions to the land surface model. 
The LSMs in LDAS are driven by atmospheric forcing data such as precipitation, 
radiation, wind speed, temperature, humidity, etc., from various sources. LDAS applies 
spatial interpolation to convert forcing data to the appropriate resolution required by the 
model. Since the forcing data is read in at certain regular intervals, LDAS also temporally 
interpolates time average or instantaneous data to that needed by the model at the current 
timestep. The selected model is run for a vector of ``tiles'', intermediate information is 
stored in modular arrays, and output and restart files are written at the specified output 
interval. 
 
2.2 Community Land Model (CLM) 
 
   CLM (Community Land Model) is a 1-D land surface model, written in Fortran 90, 
developed by a grass-roots collaboration of scientists who have an interest in making a 
general land model available for public use. LDAS currently uses CLM version 1.0, 
formerly known as the Common Land Model. CLM version 2.0 was released in May 
2002 and will be implemented in future version of LDAS/LIS. The source code for CLM 
2.0 is freely available from the National Center for Atmospheric Research (NCAR)  
(http://www.cgd.ucar.edu/tss/clm/). The CLM is used as the land model for the 
Community Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which 
includes the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/). 
CLM is executed with all forcing, parameters, dimensioning, output routines, and 

http://www.ccsm.ucar.edu/
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coupling performed by an external driver of the user's design (in this case done by 
LDAS).  CLM requires pre-processed data such as the land surface type, soil and 
vegetation parameters, model initialization, and atmospheric boundary conditions as 
input. The model applies finite-difference spatial discretization methods and a fully 
implicit time-integration scheme to numerically integrate the governing equations. The 
model subroutines apply the governing equations of the physical processes of the soil-
vegetation-snowpack medium, including the surface energy balance equation, Richards' 
(1931) equation for soil hydraulics, the diffusion equation for soil heat transfer, the 
energy-mass balance equation for the snowpack, and the Collatz et al. (1991) formulation 
for the conductance of canopy transpiration. 
 
2.3 The Community NOAH Land Surface Model 
 
  The community NOAH Land Surface Model is a stand-alone, uncoupled, 1-D column 
model freely available at the National Centers for Environmental Prediction (NCEP; 
ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/).  The name is an acronym representing the 
various developers of the model (N: NCEP; O: Oregon State University, Dept. of 
Atmospheric Sciences; A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and 
H: Hydrologic Research Lab - NWS (now Office of Hydrologic Dev -- OHD)).  NOAH 
can be executed in either coupled or uncoupled mode.  It has been coupled with the 
operational NCEP mesoscale Eta model (Chen et al., 1997) and its companion Eta Data 
Assimilation System (EDAS) (Rogers et al., 1996), and the NCEP global Medium-Range 
Forecast model (MRF) and its companion Global Data Assimilation System (GDAS).  
When NOAH is executed in uncoupled mode, near-surface atmospheric forcing data 
(e.g., precipitation, radiation, wind speed, temperature, humidity) is required as input. 
NOAH simulates soil moisture (both liquid and frozen), soil temperature, skin 
temperature, snowpack depth, snowpack water equivalent, canopy water content, and the 
energy flux and water flux terms of the surface energy balance and surface water balance. 
The model applies finite-difference spatial discretization methods and a Crank-Nicholson 
time-integration scheme to numerically integrate the governing equations of the physical 
processes of the soil vegetation-snowpack medium, including the surface energy balance 
equation, Richards’ (1931) equation for soil hydraulics, the diffusion equation for soil 
heat transfer, the energy-mass balance equation for the snowpack, and the Jarvis (1976) 
equation for the conductance of canopy transpiration. 
 
2.4 Variable Infiltration Capacity (VIC) Model  
 
Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model, written in 
C, being developed at the University of Washington and Princeton University. The VIC 
code repository along with the model description and source code documentation is 
publicly available at 
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html. VIC is used 
in macroscopic land use models such as SEA - BASINS  
(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed, grid-based 
hydrological model, which parameterizes the dominant hydrometeorological processes 
taking place at the land surface - atmospheric interface. The execution of VIC model 
requires preprocessed data such as precipitation, temperature, meteorological forcing, soil 

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html
http://boto.ocean.washington.edu/seasia/intro.htm
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and vegetation parameters, etc. as input. The model uses three soil layers and one 
vegetation layer with energy and moisture fluxes exchanged between the layers.  The 
VIC model represents surface and subsurface hydrologic processes on a spatially 
distributed (grid cell) basis. Partitioning grid cell areas to different vegetation classes can 
approximate sub-grid scale variation in vegetation characteristics. VIC models the 
processes governing the flux and storage of water and heat in each cell-sized system of 
vegetation and soil structure.    The water balance portion of VIC is based on three 
concepts: 

1) Division of grid-cell into fraction sub-grid vegetation coverage. 
2) The variable infiltration curve for rainfall/runoff partitioning at the land 
surface. 
3) A baseflow/deep soil moisture curve for lateral baseflow. 

 
Water balance calculations are preformed at three soil layers and within a vegetation 
canopy.  An energy balance is calculated at the land surface. A full description of 
algorithms in VIC can be found in the references listed at the VIC website. 
 
3 LIS software architecture 
 
This section describes the software architecture of the components of LIS.  The proposed 
LIS framework will have the following functional components: (1) A system for high 
resolution global land data assimilation system, involving several land surface models, 
and land data assimilation technologies. (2) A web-based user interface that accesses data 
mining, numerical modeling and visualization tools. To facilitate these features, LIS will 
integrate the use of various software systems such as LDAS, land surface models, 
GrADS – DODS, etc. LIS is also expected to act as a framework that enables the land 
surface modeling community to define new standards and also to assist in the definition 
and demonstration of the ESMF. As a result, the design of LIS will also feature the 
incorporation of new standards and specifications such as ALMA and ESMF. 
 
Figure 1 shows the LDAS software architecture. As mentioned earlier, currently LDAS 
includes CLM and NOAH land surface models. VIC land surface model will be 
incorporated in the future versions of LDAS and LIS. 
 
Figure 2 presents the LIS software architecture. It can be noticed that LIS will be built 
upon the existing LDAS, with new components and expanded functionalities for the 
support of parallel processing, GrADS-DODS server-based data management, ALMA 
and ESMF-compliance, web-based user interfaces, and system management of a Linux 
cluster platform 
 
The function of LIS dictates a highly modular system design and requires all the 
modules, or components, to work together smoothly and reliably. Figure 2 shows an 
overview of the LIS software architecture and its components, and their interactions. LIS 
will continuously take in relevant atmospheric observational data, and will subsequently 
use it to force the land surface models, and the land surface simulation is carried out in a 
highly parallel fashion. Meanwhile the large amount of output data will be efficiently 
managed to facilitate reliable and easy access. Moreover, LDAS, its interface to the three 
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land models (CLM, NOAH, and VIC), and its input/output modules, will conform ESMF 
standards, while the output data variables and formats, and the variables passed between 
LDAS and the three land models, will follow ALMA specification. Finally, LIS also has 
software components to manage the parallel job processing and monitor hardware status 
and manage them to ensure sustained high performance output and high availability in 
the Linux cluster environment. Following is a list of LIS software components: 
  

•  Land surface modeling:  LDAS and the three land models – CLM, NOAH and 
VIC. LDAS can be configured to run one, two or all the three land models at the 
same time.  

•  Parallel processing: implementation of the parallelization scheme. 
•  GrADS-DODS server 
•  Data retrieving 
•  System monitoring: only applies to the LIS cluster environment.  
 

By the use of modular programming and by conforming to well established standards 
such as ALMA and ESMF, LIS is expected to provide a flexible, extensible framework to 
land surface modelers and researchers.  
 

Raw data on the Internet

Data
retrieving

Input Output

LDAS

To atmospheric models

Input
data

Output
data

Single-
processor
platform

CLM NOAH

 
Figure 1: Current Land Data Assimilation System (LDAS) structure.  It uses CLM and NOAH land 

models. 
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Figure 2: Overview of LIS software architecture and its components designed for LIS cluster.  A 

subset of the components, the LDAS and parallel computing implementation, will also be tested on 
SGI Origin platforms. 

 
3.1 Software data structures 
 
This section describes the internal software data structures in LIS. As described earlier, 
the main component that drives different LSMs is LDAS. The one-dimensional land 
surface models such as CLM, NOAH, and VIC are included as subroutines of LDAS. 
LDAS, CLM, and NOAH are written in Fortran 90 and these land surface models are 
interfaced in LDAS through well defined drivers. LDAS code is designed in a modular 
fashion, with a number of modules used to encapsulate data as well as parameters that are 
used to solve different governing equations. Please refer to the LDAS code 
documentation (http://lis.gsfc.nasa.gov/docs/LDAS-Doc/ldas2) for a detailed description 
of the source code. 
 
A brief description of the modules are presented below: 
 
LDAS Modules 
grid_module:  This module is an abstract representation of a "grid" used in LDAS. The 
module includes non model specific parameters such as lat/lon, land/water masks of grid, 
input/output forcing variables, and variables for temperature assimilation and correction. 
This module is used by the LDAS main driver and subroutines that are associated with 
non-model specific computations. 
 
tile_module : This module is a representation of the "tile" described in section 2.1 that is 
used to simulate sub-grid scale variability. This module includes specification of non-
model specific tile variables, such as lat/lon of tile, row/column of tile and properties 
such as canopy conductance, aerodynamic conductance of the tile. 
 

http://lis.gsfc.nasa.gov/docs/LDAS-Doc/ldas2
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ldas_module : This module specifies the variables used in LDAS driver such as the 
model domain specifications, type of land surface model used, type of forcing, 
specification of source files, etc. It does not include specification of tile space or grid 
space variables. This module is used by the main driver and subroutines that perform 
non-model specific computations such as spatial/temporal interpolation.  
 
Driver Modules 
 
The driver modules encapsulate the variables and data types that are involved in the 
interfacing of land surface models to LDAS. More specifically, they are: 
 
CLM driver modules 
 
drv_module : This module is for the one-dimensional land driver variable specification 
for CLM. It includes CLM specific parameters such as the driver parameters, timing and 
diagnostic parameters, etc. 

 
drv_gridmodule : This module is used for the grid space variable specification for CLM. 
It includes CLM forcing parameters, CLM vegetation parameters, CLM soil parameters, 
etc. 
 
drv_tilemodule : This module includes tile space variable specification for CLM. 

 
clmtype : This is a module for the one-dimensional CLM variable specification. It 
includes CLM specific parameters such as water, snow, energy fluxes, soil, vegetation 
parameters, etc. 
 
NOAH driver modules 
 
noah_module : This module specifies one-dimensional NOAH land driver variable 
specification. It includes NOAH state parameters, output variables, etc. 
 
VIC structures 
 
VIC includes a number of structures that are used to encapsulate model options, forcing 
parameters, global simulation parameters, soil and vegetation parameters, etc. The main 
structures are:  
 
option_struct : This structure is used to store model options. 
global_param_struct : This structure is used to store the global parameters defined for 
the current simulation. 
soil_con_struct : This structure is used to store the constant variables for the soil in the 
current grid cell.  
veg_con_struct : This structure is used to store all constant parameters for the vegetation 
types in the current grid cell.  
atmos_data_struct : This structure is used to store the meterological forcing data for 
each time step. 
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cell_data_struct :  This structure is used to store the grid cell specific variables, not 
included in the vegetation structures.  
energy_bal_struct : This structure is used to store all variables used to compute the 
energy balance and soil thermal fluxes.  
snow_data_struct:  This structure is used to store all variables used by the snow 
accumulation and ablation algorithm, and the snow interception algorithm. 
 
4 Hardware Platforms for LIS 
 
This section describes the hardware operational platforms intended for LIS. The SGI 
Origin 3000 will be used to implement and demonstrate only the high resolution, parallel, 
global land surface modeling and data assimilation components 
(LDAS/CLM/NOAH/VIC) of LIS. The fully operational LIS (with user interfaces and 
visualization components such as GrADS - DODS) will be demonstrated on a custom 
designed Linux cluster. The following section describes the hardware design of the 
cluster. 
 
4.1 LIS cluster architecture 
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Figure 3: The physical architecture of the LIS Linux cluster. The cluster has 8 IO nodes and 192 
compute nodes. Each IO node has dual Athlon CPUs,  2GB RAM and Gigabit NICs,  and each 
compute node has a single Athlon CPU , 512MB RAM and a Fast Ethernet NIC. 
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    Figure 3 shows the physical architecture of the LIS Linux cluster. The cluster consists 
of 192 computing nodes. The cluster also includes 8 IO (input – output) nodes, 
specifically to handle the huge data management requirements. These nodes are 
interconnected with 8 Ethernet switches. 
   
   The 192 computing nodes are divided into 8 sub-clusters, with 24 nodes in each sub-
cluster, interconnected with fast Ethernet via one of the 8 24-port fast Ethernet switches. 
Each switch also has two gigabit ports to connect the 8 IO nodes and the other switches.  
 
   The use of 8 sub-clusters and 8 IO nodes is mainly for the segregation of network 
traffic resulting from non-local file IO operations, and for the spreading of data storage so 
each IO node does not have to deal with single big files. So in average each IO node will 
only need to serve the IO requests of 24 computing nodes, and only store 1/8 of the 
output information, which makes the output volume manageable.  
 
4.2 Network traffic estimation within the cluster 
 

…  ...

L in k  A
125M B /w rite

17  sec

L in k  B
3G B  (125M  *  24 )/w rite

40  sec

2 4 -p ort F E  sw itch  w /1  g iba b it u p lin k

IO  n o d e

C o m p u tin g
n o d e  

Figure 4: Network traffic estimation within the cluster.  The traffic is dominated by the output data 
flow from the compute nodes to the IO nodes. The output data will go through two network links: 

Link A, from a compute node to an Ethernet switch; Link B, from the switch's gigabit port to an IO 
node. 

 
 
  As to be shown in Table 1 below, the total output data volume (200GB/day) produced 
by the cluster is much larger than the input data volume (279MB/day), so the network 
traffic is dominated by the upstream traffic from the compute nodes to the IO nodes, 
where the output data are stored. The data will travel trough two network links: link A -- 
a compute node to a fast Ethernet switch port; link B -- the switch's gigabit port to an IO 
node. Figure 4 shows the network traffic between the two network links. Following is the 
worksheet for the estimation of the traffic at these two links:  
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  Worst case scenario assumption: all the compute nodes are writing the output data to the 
IO nodes at the same time; effective bandwidth is 60% of the Ethernet wire bandwidth.  
 
Link A traffic:  
  Data volume each compute node will produce:  
         200GB/day * (1/192) ~ 1GB/day 
  Frequency each compute node writes output data to an IO node:  
         every 3 simulation hours.  
  Total writes a compute node has:  
        8 per simulation day 
  Data volume each write per compute node:  
        1GB/day * (1/8) = 125MB/write 
  Time taken for the data to travel over link A:  
        125MB*8/(100M*60%)= 17 sec 
 
Link B traffic: 
  In average, the number of compute nodes each IO node receives data from: 
          24 
  Total data volume each IO node receives per write:  
          125MB * 24 = 3GB 
  Time taken for the data to travel over link B:  
          3GB*8 /(1G*60%) = 40 sec 
 
   In summary, in the worst case scenario, it takes only 57 seconds for the 3-hour 
simulation data to be transferred from the compute nodes to the IO nodes. In reality, the 
data traffic will be much spread in time, and the network bandwidth will not be a 
bottleneck.
 
5 High performance computing in LIS 
 
Accurate initialization of the land surface moisture, carbon, and energy stores in a fully 
coupled climate system is critical for meteorological and hydrological prediction. 
Information about land surface processes is also of critical importance to real-world 
applications such as agricultural production, water resource management, flood 
prediction, water supply, etc. The development of LDAS has been motivated by the need 
for a system that facilitates land surface modeling with an assimilation system to 
incorporate model derived and remotely sensed data. LDAS system has been successfully 
used in simulations for North America at 1/8 degree resolution in both real time and long 
term (50 years) retrospective simulations. However, to truly address the land surface 
initialization and climate prediction problem, LDAS needs to be implemented globally at 
high resolution (1km). It can be estimated that the computational and resource 
requirements increase significantly for global modeling at such high resolutions. The 
proposed LIS system will aim to make use of scalable computing technologies to meet 
the challenges posed by the global, high-resolution land surface modeling.  
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5.1 Parallel processing in land surface modeling 
 
Parallel computing is a powerful programming paradigm to deal with computationally 
intractable problems. The notion behind parallel programs is to divide the tasks at hand 
into a number of subtasks and solve them simultaneously using different processors. As a 
result, a parallel system can improve the performance of the code considerably.  
 
Land surface processes have rather weak horizontal coupling on short time and large 
space scales, which enables highly efficient scaling across massively parallel 
computational resources. LIS aims to take advantage of this weak horizontal coupling of 
land surface processes by using a coarse-grained parallelization scheme, which does not 
require communication between the compute nodes. This design fits well with the 
distributed memory nature of the Linux cluster architecture.  
 
  The parallel processing code is to break the whole processing job into properly sized 
small pieces on the IO nodes, and then to distribute the pieces to the compute nodes, to 
monitor the progress of the small jobs, to maintain balanced loads across the compute 
nodes, and finally, to collect and assemble the finished pieces and pass the results to the 
output. The parallel processing component plays a critical role to connect the land surface 
modeling job to the underlying multi-processor parallel computing hardware platform, in 
our case, a Linux cluster or an SGI Origin 3000, to achieve the goal of near real-time 
processing of high-resolution land surface data.  
 
5.2 Land surface modeling in LIS 
 
The land surface modeling component is designed to perform high-performance, parallel 
simulation of global, regional or local land surface processes with initially three land 
surface models: the CLM model, the NOAH model and the VIC model. Specifically, the 
land surface modeling component will interact with the data management components to 
obtain properly formatted input forcing data, and pass the forcing data, alone with other 
static parameters, to the three land surface models through the LDAS. Each of the land 
surface models carries out the simulation on a distributed, parallel hardware platform, 
either a Linux cluster or a SGI Origin 3000. The results are passed to the output 
component, which interacts with the data management subsystem to handle the output 
data. The parallelization process is managed by the system management components. The 
component provides interface in accordance with ALMA and ESMF standards, wherever 
applicable.  

5.2.1 Structure of land surface modeling component  
 
Figure 5 shows the software structure of the land surface modeling component. The 
component is designed to be modular with well-defined interfaces that comply with 
ALMA or ESMF standards. The interface between the land model driver and three land 
models, CLM, NOAH and VIC, will comply with ESMF and will be general enough so 
that additional land surface models can be added without much modification of the code. 
The land surface modeling component is designed in a way that multiple copies can run 
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as different processes in parallel, independent of each other, with each of them processing 
a different piece of land surface. 
 

LDAS

GrADS-DODS

Input data cache and
pre-processor

ALMA

ALMA-compliant
LIS output

Input data

ESMF

CLM

ESMF

NOAH

ESMF

VIC

ESMF

Output data cache and
post-processor

ALMA

ESMF interpolation and re-projection
ALMA

Interface to atmospheric
models

 
Figure 5: LIS land surface modeling architecture with ALMA and ESMF interfaces 

 

5.2.2 Implementation of land surface modeling component 
 
    The land surface modeling subsystem is designed to be running in parallel, both on a 
Linux cluster with 200 nodes, and on a SGI Origin 3000 platform with 512 processors. 
Although the hardware architecture differs greatly between the distributed-memory Linux 
cluster and the shared-memory SGI Origin 3000, our implementation of the land surface 
modeling programs will make this architectural difference fairly transparent: On the 
Linux cluster, each node will run a copy of the land surface modeling process; on the SGI 
Origin, each CPU will run a copy. Thus we establish a direct correspondence between a 
node in the Linux cluster and a CPU in the Origin 3000, and the hardware architectural 
differences will not matter to our design of the software; The land modeling scheme will 
be able to run on both platforms, with minor modifications in the command line syntax.  
So in this document whenever we refer to a node in the Linux cluster, it applies equally to 
a CPU in the Origin 3000.  
 
   Interoperability is achieved by following both the ALMA and ESMF standards closely. 
By following the ALMA standard, the LIS land surface modeling system is guaranteed to 
exchange data with other land surface modeling systems that are also ALMA-compliant. 
ESMF standard will allow us to interact with other Earth system models, such as 
atmospheric models or environmental models with standard interfaces. 
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Figure 6: LIS land surface modeling flowchart. 

 

As shown in Figure 6, and described in detail in the land surface model documentation, 
land surface models proceed in a manner similar to other physical models.  Modeling 
proceeds given prior knowledge of the spatial and temporal domains of the simulation, in 
addition to initial conditions and parameters required to solve the equations of water and 
energy conservation within that domain.  Modeling proceeds according to increments of 
time (“time steps”, typically 15 minutes), until the ending time is reached and data is 
written out for future runs and analysis. 
 
5.3 Compute node job processing  
 
 A compute node’s job is to run a copy of the land surface modeling subsystem in its 
process space, compute a piece of land surface obtained from the IO node, and request 
another piece of land surface from the IO node as soon as it finishes the current piece, 
until the IO node refuses to give it any pieces, in which case there are no more land 
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pieces are available and the compute node’s job is done.  Figure 7 shows the flow chart of 
the compute node’s job handling process.  
 

Node k gets
land piece k

Node k computes
land piece k

Node k finishes
land piece k

Node k notifies
IO nodes and sends

data

Compute node k
starts

Node k requests
a land piece

Request
granted?

Run
finished

Yes

No

 
Figure 7: Compute nodes flowchart for parallel computing of land surface modeling. A compute 

node does not communicate to other compute nodes. 

5.4 IO node job processing 
 
   We estimate that at 1km resolution LIS will deal with ~50,000 times more grid points 
than the 2ºx2.5º resolution LDAS . To satisfy the requirements of real-time operation, the 
job, which includes a grid representation of the global land surface, must be split into 
smaller pieces and run in parallel. We plan to divide the global surface into 10,000 small 
land pieces, and with 1km resolution, each piece would require about 5 times as many 
computations as the 2ºx2.5º LDAS , and will take a single computing node about 200MB 
memory to run, and 10 minutes to finish a 1-day simulation, based on the initial 
performance baselining of LDAS running at both 2ºx2.5º and 0.25ºx0.25º resolutions. 
The Linux cluster can consume approximately 200 pieces per round, and under ideal 
conditions, it will take the whole cluster about 50 rounds to finish the whole job. This 
will take 500 minutes, or about 9 hours, to finish a 1-day simulation of the whole global 
land surface, which satisfies the real-time requirement with enough extra room. We 
expect that the timings on the SGI Origin will be comparable to those on the cluster, 
although memory and disk limitations, some imposed by the queue structure, will likely 
prohibit effective use of that system for demonstrating LIS in a near-real-time mode.  
However, we plan to demonstrate the LIS on the SGI Origin system as proof-of-concept. 
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Figure 8: Parallel computing control flowchart (left) and parallelization scheme (right) of a master 

node. 

 
   We propose to use a modified version of the “pool of tasks” scheme for the parallel 
processing of the land pieces. A pool of tasks paradigm is equivalent to a master – slave 
programming notion, where a single processor will act as a master node and distribute 
jobs to the slave (compute) nodes. In the LIS “pool of tasks” design, one of the IO nodes 
will act as a master node and another IO node will be designated as a backup to it.  
The master node will keep three tables on hand when starting the job: table of unfinished-
jobs, finished-jobs, and jobs-fetched. At the beginning, the 10,000 land pieces are listed 
in the "unfinished" table, and each compute node comes to the master to fetch a piece 
from it, and starts working on it. The master node then moves the fetched jobs to the 
"jobs-fetched" table, and starts a timer for each fetched job. The timer specification will 
be based on the existing knowledge of a single execution of a land surface model. When 
a compute node finishes a job and notifies the master node before the job’s corresponding 
timer runs out, this piece is regarded a finished job, and the master node moves it from 
the "fetched" table to the "finished" table. And the compute node goes on to fetch another 
job until the "unfinished" table is empty. If a fetched job's timer runs out before the 
compute node reports back, the master node then assumes that that particular compute 
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node must have crashed, and then moves that timed-out job from the "fetched" table back 
to the "unfinished" table for other compute nodes to fetch. Figure 7 shows the flowchart 
(left) of the master node’s job handling and scheduling process, and the various status of 
the three tables (right) the master node uses to keep track of the job progress at different 
corresponding stages in the flowchart.  
 
To maximize throughput of the system in a parallel environment, load balancing is 
required to keep the compute nodes busy by efficiently distributing the workload.  The 
use of a "pool of tasks" is effective in achieving automatic load balancing by minimizing 
the idle times of compute nodes, since the nodes that finish their computations will 
request more tasks than the ones that require more time for their computations. This 
automatic, asynchronous scheduling help in keeping the compute nodes busy without 
having to wait for other node's computations.  
 
As shown in Figure 8, as the land surface modeling process starts, the master node 
divides the globe into a number of smaller pieces. The inputs required by the land surface 
models, namely, initial conditions, boundary conditions, and parameters will be provided 
to the compute nodes before the land surface model run begins. The modeling process 
can be a fresh initialization (cold start) or a restart from a previously finished run. This 
process also requires preprocessing of the data such as time/space interpolation. The 
output from each compute node, after the computation, will be reassembled at the IO 
nodes.  
 
6 Data Management in LIS 
 
The data management subsystem in LIS is composed of the following functions: input 
data retrieval from the Internet, data pre-processing and post-processing, data 
interpolation and sub-setting, output data aggregation, storage, backup and retrieval. It 
links the other subsystem together, and ensures smooth end-to-end data flow, from the 
input raw data all the way to the output data satisfying LIS users’ various requests. The 
following sections describe the data flow and volume used in LIS operation, the use of 
GrADS-DODS server for data management, visualization, etc., and other functions such 
as data retrieval. 
 
6.1 Data flow and volume in LIS 
 
   Figure 9 shows the global logical data flow of LIS system on the LIS cluster platform.  
On SGI Origin platform, the IO nodes in Figure 3 will be replaced by local disks for the 
IO functions, and the compute nodes are replaced with the same number of CPUs. Input 
data will be pre-staged on SGI instead of using GrADS-DODS servers.  
 
    LIS will deal with three categories of global data: parameter data, input forcing data 
and output data. At the top level of the system design, the global data are represented by 
data files of various formats. 
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Figure 9: LIS global logical data flow on LIS Linux cluster.  Physically, the IO nodes for input data 
and output data on the two sides of the cluster are the same IO node computers. On SGI, the flow is 

similar, except the IO nodes will be replaced by local hard disks, and the compute nodes will be 
replaced by CPUs. GrADS-DODS servers will not be used on SGI. Instead, the data will be pre-

staged. 

   The parameter data include the vegetation classification, land mask, etc., with a size of 
about 136 GB. Since these data will not be updated frequently, we will put a copy of 
these data on each compute node's local disk to reduce network traffic. Currently the bulk 
of the data are saved as ASCII data, and we will convert the data into binary format to 
allow all the static data to fit on the node's 80 GB disk.  
 
   The forcing data, fetched from various locations on the Internet, need to be fed to the 
compute nodes at regular intervals. The total traffic is estimated to be 279 MB/day, which 
is not significant compared to the output data traffic. We designate one of the IO nodes to 
fetch and pre-process the data, then send a copy of the forcing data to the other IO nodes 
via NFS system.  When a compute node needs the forcing data, it will contact the IO 
node, which corresponds to the sub-cluster it belongs to without bothering other IO 
nodes. To further reduce the IO network traffic, each IO node will run the GrADS-DODS 
server to feed the compute nodes with the sub-set of the data they need.  
 
  The output data will be stored on the IO nodes too, and served to users via a GrADS-
DODS server running on one of the IO nodes. Since it is not feasible to store the output 
in a single file (200 GB/day), we want to distribute the data across all the IO nodes. To 
keep the huge output data volume manageable, we designed a storage scheme that will 
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distribute the land surface variables in the output data across the IO nodes. Since there are 
40-48 variables in the output data, with some of them having multiple levels, we can let 
each IO node to store the global data of only 6 or so of the output variables. So on 
average, the I/O traffic is segregated and each IO node is only taking 1/8 of the total data 
traffic, and the subsequent operations by the GrADS-DODS servers are greatly 
simplified.   
 
Table 1 lists all the global data files and specifications. As described in Section 2, these 
files specify the parameters, initial and boundary conditions required for the land surface 
model runs. For e.g, the forcing data translates to variables such as total precipitation, 
convective precipitation, downward shortwave and longwave radiation, near surface air 
temperature, near surface specific humidity, near surface U, V, winds and surface 
pressure. In addition to these files, the user also specifies parameters such as the spatial 
and temporal resolution, the land surface model, etc. LDAS also allows the user to 
initialize state variables, either by specifying a global uniform value or taken from a 
restart file produced by a prior run. Please refer to the LDAS source code documentation 
(http://lis.gsfc.nasa.gov/docs/LDAS-Doc/ldas2/) for a detailed description of the 
input/output routines corresponding to each file. The output from the land models 
translates to variables such as soil moisture, surface runoffs, canopy transpiration, etc. A 
list of the LDAS variables passed between the modules, following the ALMA 
convention, is presented in Appendix A. 
 

Table 1: LIS global data files 

LIS data files and estimated data volume for LIS with 1km x 1km resolution, based on the data used for 
LDAS ¼ x ¼ 

 

Dataset Information Desired 
Resolution 

Native 
format 

Apprx. 
Size 

Update 
frequen
cy 

UMD 
Vegetation 
classification 
map 

This file lists the frequency with which of each of the 14 
vegetation types occurs in each of the ¼ degree LDAS 
grid boxes. See 
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml 
for a detailed description. 

1km x 1km  ASCII 65G Static 

UMD Land 
mask  

This ascii file contains the LDAS unified land/sea mask.  
See 
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml 
for a detailed description 

1km x 1km ASCII 18G Static 

Soil 
classification 
map 

1km x 1km  Binary 20G Static  

Soil color 
map 1km x 1km  Binary 2G Static 

Sand 
fraction file 1km x 1km Binary 6G Static 

Clay fraction 
map 

The soil parameter maps used in LDAS were derived 
from the global soils dataset of Reynolds et al. (1999).  
That dataset includes the percentages of sand, silt, and 
clay, among other fields, and is based on the United 
Nations Food and Agriculture Organization (FAO) Soil 
Map of the World linked to a global database of over 
1300 soil pedons. The LDAS soil color map was 
interpolated from a 2 x 2.5 degree global map produced 
by NCAR 1km x 1km Binary 6G Static 

 
Leaf Area 
Index (LAI) 
 

This was generated using three information sources: (1) 
an 8km resolution time series of LAI, which was derived 
by scientists at Boston University (Myneni et al. 1997) 
from AVHRR measurements of normalized difference 

1km x 1km Binary 1M Static  

http://lis.gsfc.nasa.gov/LDAS-Doc/ldas2/
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml
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AVHRR – 
derived LAI 
climatology 
 

vegetation index (NDVI) and other satellite observations. 
(2) A climatology based on the 8km time series and (3) 
the 1km UMD vegetation type classification.  1km x 1km Binary 5G Static 

Static file size                                                                                                                                              125G  

GEOS 
forcing data 

Obtained from GSFC’s Goddard Earth Observing System 
Data  Assimilation System (GEOS) (Pfaendtner et al. 
1995) version 4.3 that supports level-4 product 
generation for the NASA Terra satellite (Atlas and 
Lucchesi 2000). 

1 deg Binary 25M/d
ay 

Every 3 
hours 

GDAS 
forcing data 

The Global Data Assimilation System (GDAS) is the 
global, operational weather forecast model of NCEP 
(Derber et al 1991). LDAS makes use of GDAS 0, 0.3, 
and, as needed,  6 (hour) forecasts, which are produced at 
6 hour intervals 

Native T170 
~0.7 deg GRIB 50M/d

ay 
Every 6 
hours 

 
AGRMET 
SW flux data 
 
 

Binary 48M/d
ay 

Every 1 
hour 

AGRMET 
LW flux 
data 

LDAS estimates global, downward shortwave and 
longwave radiation fluxes using a procedure from the Air 
Force Weather Agency’s (AFWA) Agricultural 
Meteorology modeling system (AGRMET).  It utilizes 
the AFWA Real Time Nephanalysis (RTNEPH) 3-hourly 
cloud maps (Hamill et al. 1992), and the AFWA daily 
snow depth (SNODEP) maps (Kopp and Kiess 1996) to 
calculate surface downwelling shortwave radiation using 
the algorithms of Shapiro (1987) 

~ 48 km 

Binary  144M/
day 

Every 1 
hour 

NRL 
precipitation 
data 

Near-real time satellite-derived precipitation data is 
obtained from the U. S. Naval Research Laboratory 
(NRL).  NRL produces precipitation fields based on both 
geostationary satellite infrared (IR) cloud top temperature 
measurements and microwave observation techniques 
(Turk et al. 2000) 

¼ degree Binary 12M/d
ay 

Every 6 
hours 

Total data input flux                                                                                                                                   279M/day 
Estimated output volume for LIS (1/100 x 1/100) Resolution, based on GLDAS runs with 2x2.5 resolution. 

Data output interval is assumed to be the same 
CLM output 
data Output from LDAS runs 1km x 1km GRIB 200G/

day 
Every 
15 min 

Total data output flux                                                                                                                                200G/day 
 
 
6.2 GrADS-DODS server structure 
 
   GrADS-DODS servers will be employed both to serve the input data to the land 
surface computing code, and to serve the output to the Internet users. Figure 10 shows the 
architecture of  the GrADS-DODS server. A GrADS-DODS server uses a typical client-
server architecture to communicate with the DODS clients. The communication protocol 
between a client and a server is HTTP. A GrADS-DODS server has the following 
components: Java servlets contained in the Tomcat servlet container, to handle the client 
requests and server replies via HTTP protocol; DODS server APIs, to parse the DODS 
requests and package output data; interface code, to translate the DODS requests into 
GrADS calls; and finally, GrADS running in batch mode, to actually process the requests, 
and perform data-retrieving, sub-setting and processing on the server side. 
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Figure 10: GrADS-DODS server architecture. 

6.3 Description for data retrieving component 
 
     The data retrieving component locates and downloads various atmospheric forcing 
data sets, as specified in Table 1, at regular intervals, from the Internet to LIS’s local 
disks. The data retrieving component will also perform some basic pre-processing on the 
forcing data. 

6.3.1 Implementation 
    The data retrieving component is implemented as a multi-process structure, with each 
process dealing with a specific data set, so in case a data set takes unusually long time, it 
will not block the other processes’ progress. Following is the pseudo-code of the data 
retrieving component: 

 
Define data sources:

DS[1]: URL1
DS[2]: URL2
…
DS[n]: URLn

End Define data sources

For I=1, n Do
Start process(I) (non-blocking start)

End For

Define Process (I)
Fetch data from DS[I];
Pre-process DS[I];
Return;

End Define Process (I)
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7 Description for system monitoring component 
 
The system monitoring component is responsible for monitoring, maintaining and 
administering the LIS system on the Linux cluster to ensure its reliable operation and 
optimal performance output.  
 
We categorize the system management function into four levels: hardware level, 
interconnect level, operating system level and application software level. For the SGI 
Origin 3000 platform, we are not involved in the management of the hardware and 
interconnect levels. But for the Linux cluster, the hardware and interconnect level 
management is our responsibility and is critical to the overall stability and performance 
of the LIS system.  
 
The hardware level system management involves power-up and shutdown of the nodes, 
booting strategy and hardware status monitoring. Interconnect level management requires 
the monitoring of the link status of the network nodes, bandwidth usage and traffic 
statistics. Operating system level management takes care of system resource usages, such 
as CPU, memory and disk space usage. Application level management oversees the 
progress of the LIS jobs, configures different runs, analyze performance bottlenecks, and 
obtain performance profiles for fine-tuning. Dynamic error and diagnostic logs will be 
maintained for LDAS and the land surface models during the operation of LIS. The 
diagnostic logs will be available to the end users.  
  
7.1 Hardware monitoring data 
 
The following table summarizes the system data of various levels the management 
subsystem is designed to collect and analyze.  
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Table 2: Hardware monitoring and management data collection 

Category  Data Items Update frequency
Overall cpu/mem of each process 1min
Overall progress of whole job 2min
Progress of each process 1min
Timing of each module sampled, off-line
Memory usage of each module sampled, off-line
Total memory usage & biggest user 2min
Total CPU usage & biggest user 2min
Total disk space usage 2min
System up-time and running procs 2min
Bandwidth usage of each node 2min
Bandwidth usage of switches 2min
Latency measurements 2min
Packet drops measurements 2min
Fan speeds 10min
Chasis temperature 10min
Power supplies voltage 10min

LIS Cluster System Monitoring and Management Data

Operating system level

Interconnect level

Hardware level

Application level

 
7.2 Architecture and implementation 
 
The variety of system variables and management duties requires us to design a 
management system with modules performing individual and well-defined tasks. Figure 
11 shows the structured design of the system management functionalities for the Linux 
cluster platform. We will not implement such a system on SGI because the SGI platform 
is not under our management control.  
 
On the hardware level, we will design scripts to take advantage of the “Wake-on-Lan”  
technology for powering up the nodes smoothly in a well-defined pattern. The nodes will 
be able to boot across the network with the PXE technology, as well as from the local 
disk, to centralize system software management. After booting, each node’s hardware 
parameters, such as CPU temperature, cooling fan speeds and power supply voltages, will 
be collected by kernel modules called “lm-sensors”, and sent to the central management 
station with web-based display with automatic updates.  
  
On the interconnect level, we will use SNMP protocol as the underlying data collection 
and management mechanism, interfaced with MRTG for web-based display of network 
statistics. Additional network data can also be collected by Big Brother system and 
network monitor, also with web output.  
 
On the operating system level, we will use SNMP and various OS shell commands and 
utilities to collect system data, and use MRTG and Big Brother as the interface.  
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On the application level, we will develop CGI scripts, interfaced with OS commands and 
utilities, to provide a web-interface for the monitoring and control of LIS jobs and 
processes. Standard performance profiling and debugging tools will be used off-line to 
analyze sample runs for trouble-shooting and performance fine-tuning.   
 

OS resource
management

Interconnect
management

Hardware
management

Application
management

Monitoring and
management stations

Wake-on-Lan

LM78/80

SNMP

OS commands

Profiling tools

LIS hardware/software
system

OS commands

SNMP

PXE

 
Figure 11: LIS system monitoring and management architecture for the LIS Linux cluster. This 

system will not be implemented on SGI since it is not under our control. 

 
8 User interface design 
 
The user interface in LIS is an important component of LIS that will allow the interactive, 
flexible, use of the LIS hardware and software to users. The LIS user interface is intended 
to be web-based, and designed to allow for cascading complexity depending on the level 
of user’s need to control the system. The following sections present various facets of the 
user interface design of LIS. 
 
8.1 User interface components 
 
The user interface subsystem takes a typical multi-tier client-server system architecture. 
On the client side, a user has three types of client programs to use as the front-end: a web 
browser, a ftp client program (which can be integrated in a web browser), or a DODS 
client program. On the server side, a general purpose web server will be used to serve 
clients with a web browser, and a GrADS-DODS server will be deployed to serve DODS 
clients, and a FTP server to server ftp clients. Besides theses components, CGI scripts 
and CGI-GrADS gateway scripts will be used as the middleware to perform dynamic 
processing based on users’ interactive requests sent through web browsers.   Figure 12 
shows the user interface architecture design. 
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Figure 12: LIS user interface architecture. 

 
8.2 Sample prototype interface 
 
Figure 13 shows representative examples of the web-base interface objects to be 
implemented in the user interface. Text boxes ask for a user’s free input, which are 
mostly used in the user authentication process. Check boxes prompt a user to make one or 
more choices (Radio buttons ask for one choice). Drop-down menus limit a user’s options 
to predefined ones, which are suitable for model parameter input. Check boxes and text 
boxes can be combined to provide a user with selectable search criteria, for example. 
Finally, graphics are either pre-produced or produced as results of a user’s data query or 
data analysis. Figure 14 is a screenshot of the LIS entry page. 
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Figure 13: Sample of web-based user interface objects. 
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Figure 14: Screenshot of LIS web entry page. 

 
8.3 User levels and security design 
   Outside users accessing the LIS are categorized into three levels, associated with 
different levels of data access and security requirements.  
 
    Level 1 users are the general public, who will access the LIS data primarily through a 
standard web browser. Information provided to this class includes static images and text, 
and some limited interactive content such as GIF/JPG/PNG images generated on the fly 
in response to users' regulated web input.  The static content, most of which is static html 
pages, is served via the web server, while the interactive content is generated via a three-
tier architecture with server-side GrADS as the image engine and below it the GrADS-
DODS server as the data engine to feed the server-side GrADS. This group of users does 
not have direct access to the data or LIS scientific computing power system, and their 
usage of system resources is very limited. Therefore, for this class of users we do not 
enforce any additional authentication or authorization procedures. It is also our intention 
to facilitate easy access to the data for education and outreach purposes.  
 
Level 2 users have direct access to LIS data, either through our GrADS-DODS server by 
using a DODS client, or directly through ftp fetches. The GrADS-DODS server provides 
the users with the ability and flexibility to get only a sub-set of the data they need.  To be 
authorized as Level 2 users, they will have to register with us first by filling out web 
forms, and they will be authenticated using password and source IP addresses before 
accessing the data. The GrADS-DODS server will impose a limit on system resource 
usages.  The GrADS-DODS server allows the system administrator to limit the system 
usage by configuring the following parameters for each authorized IP address: 
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Table 3: Configurable GrADS-DODS parameters for access to level 2 users of LIS 

Parameter Description 
Subset limit Sets the maximum size in megabytes of a 

subset 
Generate limit  Sets the maximum size in kilobytes of a 

generated dataset 
Upload limit   Sets the maximum size in kilobytes of an 

uploaded dataset 
Time limit   Sets the maximum time in milliseconds 

that a dataset generation task is allowed 
Hit limit   Sets the maximum number of hits per hour 

permitted from a specific IP 
Abuse limit  Sets that length of time in hours an IP 

address will be blocked out after exceeding 
the hit limit 

Deny datasets  A comma delimited list of datasets that 
should not be accessible 

Allow datasets  A comma delimited list of datasets that 
should be accessible 

 
 
Level 3 users can configure LIS model runs to their taste using the web interface. The 
configuration parameters they enter in the web form will be converted to LIS 
configuration files to control model runs. All the parameters will have default values. 
 
The configuration parameters needed for a LIS model run fall into either temporal 
domain, spatial domain, model physics, model forcing, or output.  The temporal domain 
parameters are the start and end time.  The spatial domain parameters needed are the area 
over which the model will be run (local, regional, global, or user defined in 
latitude/longitude), and spatial resolution (1 degree, 1/4 degree, or 1 km). The model 
physics parameters needed are the Land Surface Model, the evaporation scheme, the 
snowmelt scheme, the leaf index scheme, subgrid tiling on/off, runoff routing on/off and 
dynamic vegetation on/off.  The model forcing configuration parameters needed are the 
precipitation input file source, the radiation input file source, the wind speed input file 
source, the humidity input file source, the temperature input file source, the vegetation 
input file source, the soil input file source, and the topography input file source. The 
output configuration parameters define the output data format and resolution.  
 
A representative sample listing of the required parameters of the LIS model run is 
included in Appendix B.  
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Appendix A 
 
List of LDAS variables passed between the modules (Following 
ALMA Convention) 
 
nswrs Net Surface Shortwave Radiation (W/m2)
nlwrs Net Surface Longwave Radiation (W/m2)
lhtfl Latent Heat Flux (W/m2)
shtfl Sensible Heat Flux (W/m2)
gflux Ground Heat Flux (W/m2)
snohf Snow Phase Change Heat Flux (W/m2)
dswrf Downward Surface Shortwave Radiation (W/m2)
dlwrf Downward Surface Longwave Radiation (W/m2)
asnow Snowfall (kg/m2)
arain Rainfall (kg/m2)
evp Total Evaporation (kg/m2)
ssrun Surface Runoff (kg/m2)
bgrun Subsurface Runoff (kg/m2)
snom Snowmelt (kg/m2)
snowt Snow Temperature (K)
vegt Canopy Temperature (K)
baret Bare Soil Surface Temperature (K)
avsft Average Surface Temperature (K)
radt Effective Radiative Surface Temperature (K)
albdo Surface Albedo, All Wavelengths (%)
weasd Snowpack Water Equivalent (kg/m2)
cwat Plant Canopy Surface Water Storage (kg/m2)
soilmc Total Column Soil Moisture (kg/m2)
soilmr Root Zone Soil Moisture (kg/m2)
soilmt1 Top 1-meter Soil Moisture (kg/m2)
mstavc Total Soil Column Wetness (%)
mstavr Root Zone Wetness (%)
evcw Canopy Surface Water Evaporation (W/m2)
trans Canopy Transpiration (W/m2)
evbs Bare Soil Evaporation (W/m2)
sbsno Snow Evaporation (W/m2)
pevpr Potential Evaporation (W/m2)
acond Aerodynamic Conductance (m/s)
lai Leaf Area Index
snod Snow Depth (m)
snoc Snow Cover (%)
salbd Snow Albedo (%)
tmp2m Two Meter Temperature (K)
humid Two Meter Humidity (kg/kg)
uwind Ten Meter U Wind (m/s)
vwind Ten Meter V Wind (m/s)
sfcprs Surface Pressure (mb)
soilt Soil Temperature (K)
soilm Soil Moisture (kg/m2)
lsoil Liquid Soil Moisture (kg/m2)
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Appendix B 
 
Sample input card file for the execution of LIS model run 
 
!===> Fundamental parameters necessary for running LDAS 
&driver 
LDAS%DOMAIN = 1 ! Model domain (1=NLDAS,2=GLDAS1/4,3=GLDAS2x2_5) 
LDAS%LSM    = 1 ! Land surface model (2=CLM,4=NOAH) 
LDAS%FORCE  = 3 ! Forcing data type (1=GDAS,2=GEOS,3=ETA,4=NCEP,5=NASA) 
LDAS%SOIL   = 1 ! Soil parameter scheme (1=orig veg-based, 2=Reynolds 0-3.5m, 3=NLDAS 
Reynolds 0-2m, 4=NLDAS Yun 0-2m) 
LDAS%LAI    = 1 ! Leaf area index scheme (1=original LAI settings, 2=AVHRR dervied) 
/ 
 
!===> STANDARD PARAMETERS 
!===> Parameters necessary for all domains, land surface models, and forcing related to input 
specifications 
&ldas_run_inputs 
LDAS%EXPCODE    = 999                            ! Three Digit experiment code 
LDAS%NT         = 13                                      ! Number of Vegetation Types 
LDAS%NF         = 10                                      ! Number of forcing variables 
LDAS%NMIF       = 15                                   ! Number of forcing variables for model init. option 
LDAS%WFOR       = 0                                   ! Write Forcing (0=no, 1=yes) 
LDAS%WTIL       = 0                                     ! Write tile space data (0=no, 1=yes 
LDAS%WHDF       = 1                                   ! Write HDF output files (0=no,1=yes) 
LDAS%WGRB       = 0                                   ! Write Grib output files (0=no,1=yes) 
LDAS%WBIN       = 0                                    ! Write Binary output files (0=no,1=yes) 
LDAS%STARTCODE  = 3 ! **** MOS_IC,CLM_IC,CAT_IC MUST be set to the same value 
as STARTCODE **** 
! 1=restart file,2=realtime,3=defined,4=model init 
LDAS%SSS        = 0                                       ! Starting Second 
LDAS%SMN        = 00                                   ! Starting Minute 
LDAS%SHR        = 04                                    ! Starting Hour 
LDAS%SDA        = 10                                    ! Starting Day 
LDAS%SMO        = 06                                   ! Starting Month 
LDAS%SYR        = 2001                                ! Starting Year 
LDAS%ENDCODE    = 1                               ! 0=realtime, 1=specific date 
LDAS%ESS        = 0                                       ! Ending Second 
LDAS%EMN        = 00                                   ! Ending Minute 
LDAS%EHR        = 05                                    ! Ending Hour 
LDAS%EDA        = 10                                    ! Ending Day 
LDAS%EMO        = 06                                    ! Ending Month 
LDAS%EYR        = 2001                                 ! Ending Year 
LDAS%TS         = 3600                                   ! Timestep (seconds), SHOULD NOT BE > 3600 
LDAS%UDEF       = -9999.                             ! Undefined value 
LDAS%WRITEINTF  = 3.                               ! Forcing Output Interval (hours) 
LDAS%ODIR       = "OUTPUT"                      ! Output Data Base Directory 
LDAS%DFILE      = "ldasdiag.dat"                  ! Runtime Diagnostics File (placed in ODIR/EXP) 
LDAS%FFILE      = "fsource.dat"                    ! Runtime Forcing Status (placed in ODIR/EXP) 
LDAS%EVTFILE    = "ETAValidTime"         ! Runtime Diag. of ETA files and Valid time 
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!===> Elevation Adjustment:  1=Adjust Forcing Data  0=Don't Adjust (NCEP data is already 
adjusted) ! 
LDAS%TEMPADJ    = 1                                  ! Adjust temperature data 
LDAS%PRESADJ    = 1                                   ! Adjust pressure data 
LDAS%HUMIDADJ   = 1                                ! Adjust humidity data 
LDAS%LWRADADJ   = 1                               ! Adjust long wave radiation data 
LDAS%VCLASS     = 1                                    ! Vegetation Classification (1=UMD) 
LDAS%RPSAS      = 0                                      ! Run PSAS for temperature assimilation 
LDAS%RBIAS      = 0                                       ! Run bias correction with assimilation 
LDAS%RIBC       = 0                                        ! Run incremental bias correction  
LDAS%RDBC       = 0                                      ! Run diurnal bias correction  
LDAS%RSDBC      = 0                                     ! Run semi-diurnal bias correction 
LDAS%AVHRR     = "/YUKON/AVHRR_LAI"                      ! AVHRR Data directory 
LDAS%ATIME      = 0.0                                   ! AVHRR Time flag 
/ 
 
!===> DOMAIN PARAMETER NAMELISTS 
!===> Parameters that are required for running GLDAS 
&gldas 
LDAS%NC         = 1440                                     ! Number of Columns in Grid 
LDAS%NR         = 600                                       ! Number of Rows in Grid  
LDAS%MAXT       = 1                                       ! Maximum tiles per grid 
LDAS%MINA       = 0.05                                   ! Min grid area for tile (%) 
LDAS%VFILE      = "GVEG/UMD_60G0.25.txt"                  ! Vegetation Classification Map File 
LDAS%MFILE      = "GVEG/UMD60mask0.25.asc"             ! Land/Water Map File FOR 
MODELLING 
LDAS%FMFILE     = "GVEG/UMD60mask0.25.asc"            ! *Land/Water Map File for 
FORCING DATA 
LDAS%SFILE      = "BCS/sim60soil0.25.txt"                         ! *Soil classification Map File 
LDAS%SAFILE = "BCS/sand60.25.bfsa"                    ! Sand fraction map file  
LDAS%CLFILE = "BCS/clay60.25.bfsa"                    ! Clay fraction map file  
LDAS%ISCFILE = "BCS/soicol60_2x2.5i.bin"               ! Soil color map file (for CLM) 
LDAS%GPCP       = 0                                         ! Global observed precipitation flag (0=Don't 
Use, 1=Use) 
LDAS%NRLTIME    = 0                                       ! NRL precip times 
LDAS%NRLDIR     = "/GLDAS1/NRL/6-hour"                    ! NRL precip directory 
LDAS%AGRMDIR    = "/GLDAS5/DATA/AGRMET"        ! AGRMET Forcing Base Directory 
LDAS%AGRMETSW   = 0                                       ! AGRMET SW Observed Radiation 
(0=Don't Use, 1=Use) 
LDAS%AGRMETLW   = 0                                       ! AGRMET LW Observed Radiation 
(0=Don't Use, 1=Use) 
LDAS%KVFILE     = "GVEG/tile_info.1440x600"               ! Koster tilespace file 1/4 (not 
functioning) 
LDAS%KOSTER     = 0                                       ! Flag to use Koster tilespace (0=no,1=yes) 
LDAS%NKTYPE     = 9                                       ! Number of Koster vegetation types 
/ 
!===> LAND SURFACE MODEL PARAMETER NAMELISTS 
!===> Parameters that are required for using CLM 
&clm 
LDAS%RCLM       = 1                                       ! Run CLM (0=no,1=yes) 
LDAS%WRITEINTC  = 3.                                      ! CLM Output Interval (hours) 
LDAS%CLM_RFILE  = "BCS/clm.rst"                           ! CLM active restart file 
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LDAS%CLM_VFILE  = "BCS/drv_vegm.dat"                      ! CLM Vegetation Tile Specification 
File 
LDAS%CLM_MVFILE = "BCS/drv_vegp.dat"                      ! CLM Vegetation Type Parameter 
File 
LDAS%CLM_SFILE  = "BCS/real.soilparms.txt"                ! CLM Soil Parameter File 
LDAS%CLM_CFILE  = "BCS/drv_clmin.dat"                     ! CLM Constant Parameter File 
LDAS%CLM_OFILE  = "BCS/clm_out.dat"                       ! CLM Output File 
LDAS%CLM_PFILE  = "BCS/CLM_POUT.DAT"                      ! CLM 1D Parameter Output 
File 
LDAS%CLM_ISM    = 0.45                                    ! CLM Initial Soil Moisture (m3/m3) 
LDAS%CLM_IT     = 290.0                                   ! CLM Initial Temperature (K) 
LDAS%CLM_IC     = 3                                       ! CLM Initial Condition Source 
LDAS%CLM_ISCV   = 0.                                      ! CLM Initial Snow Mass (kg/m2) 
LDAS%CLM_SMDA   = 0                                       ! CLM SM Assimilation Option 
LDAS%CLM_TDA    = 0                                       ! CLM Temperature Assimilation Option 
LDAS%CLM_SDA    = 0                                       ! CLM Snow Assimilation Option 
/ 
!===> FORCING PARAMETER NAMELISTS 
!===> Parameters that are required when using GEOS forcing 
&geos 
LDAS%FGEOS      = 1                                      ! Use GEOS 3hr Forcing (no=0,yes=1) 
LDAS%GEOSDIR    = "/GLDAS4/DATA/GEOS/BEST_LK"            ! GEOS3 Forcing Base 
Directory 
LDAS%ELEVFILE   = "BCS/eldif_geos60.25i.bin"             ! LDAS-GEOS Elevation Difference 
File 
LDAS%GEOSTIME1  = 3000.0                                 ! Initial times for GEOS files 
LDAS%GEOSTIME2  = 0.0 
LDAS%NROLD      = 181 
LDAS%NCOLD      = 360 
LDAS%NMIF       = 13                                     ! Number of forcing variables for model init. 
option 
/ 
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